Another Form of Energy is Discovered that has Infinite Possibilities

A Description of Recent Researches of T. G. Hieronymous


T. G. Hieronymous
( 1956 )


“Complete theories do not fall from heaven”…  Freud.

This well exemplified the attitude of many people — that if an idea is not completely developed and the theory so foolproof as to be beyond question, then they want no part in it.

Following Benjamin Franklin’s discovery of electricity, a scoffer caustically asked, “Of what use is that kind of knowledge?”

To which Franklin kindly replied, “Of what use is a child? He may grow into a man.”

We are very much in the same position as Franklin. We have discovered a new force or rather we have uncovered a force that has been here since the beginning of time but only a few have recognized it.

The BIG question is, “What shall we do with it?”

At the moment, we are doing two things: continuing research and acquainting interested people with the idea in order to get their cooperation. That is the reason for this paper. This is the first time the subject has been discussed publicly before an audience.

Eloptic Radiation Theory

There is an all-pervading media that is capable of being set into activity by certain forces. This media might be the same as that which is described by electronic and electrical engineers and physicists as the ether in action at higher harmonics than so far explored, or it may be a finer media. Since it acts as if it were different, let’s call it the FINE MEDIA for descriptive purposes at the moment.

Our material world is made up of combinations of a few units, some of which are called electrons, protons, and neutrons. These units act as if they were precipitations out of the Fine Media, because these units may be disintegrated or put back into their original state in the Fine Media. There is much in today’s scientific literature that points the way to these conclusions in addition to our own research results. The Fine Media can take on or manifest several different qualities, such as frequency and cohesive force.

Just as the ether can be caused to vibrate at different bands of frequencies to manifest as electricity, radio, heat, light, ultraviolet, etc., so can the Fine Media be caused to manifest in many ways.

When the Fine Media is properly influenced, it can be caused to coalesce to the point where material units such as electrons, protons, and neutrons are formed. When these units are desired to be grouped together, a still further manifestation of the Fine Media takes the form of the cohesive force necessary to form the nits into elements such as helium, iron, gold, and uranium. A still further manifestation of the cohesive force is necessary to form elements into compound or complex groups.

When such units are formed into elements or compounds, there is a stress field, or aura, around or radiating from such elements and complex groups. This field or aura has a frequency that is characteristic for each nuclear and molecular combination.

For example, chromium having in its nucleus 24 protons and 30 neutrons will have a slightly lower frequency than will iron with 26 protons and 28 neutrons, even though both nuclei contain the same total number of 54 units each.

This phenomenon is the basis of the idea covered by patents and its use as an analyzing medium, the subject matter of this paper.

It takes a certain amount of energy to cause the Fine Media to coalesce so that the units, protons and neutrons, will be formed and a lesser amount of energy to combine the units into the group of particles called the element, e.g., hydrogen, silver or mercury, and still a lesser amount of energy to form the molecules of the various compounds.

Such an element or compound can be disintegrated back into its components or units or even completely back into the Fine Media from whence it came. The atomic bomb action obeys this principle.

To disintegrate an element and change it back to its units takes energy, the amount depending upon the way the energy is applied. Assume a very heavy weight suspended by a long chain. To cause this weight to oscillate over, e.g., one foot with one blow from a hammer might require a hammer of very large proportion and a giant to wield it.

On the other hand, if a small boy gave the weight a push, then waited a bit and gave another push and another, all timed properly, the weight would begin to swing andintime would be swinging through the arc of one foot.

When a single blow in the form of a fast-moving particle, such as a neutron or alpha particle, accelerated in a cyclotron, is the “hammer”, and the nucleus of an element is to be broken up, the “hammer” must strike a tremendous blow (millions of electron volts) to crack the nucleus.

On the other hand, if a small amount of energy is fed into the nucleus at its proper frequency, the nucleus will easily, slowly, quietly fall apart into its units, just by neutralizing the effect of the cohesive force or binding energy as it is sometimes called. Thus a little energy of proper frequency steadily applied may do more than an enormous amount of energy applied in the brute force manner.

One of the most used but least controlled and understood methods of setting the Fine Media into oscillation is by the Mental-Emotional output from a human being. Just as the crystal in a radio power oscillator sets the frequency, and the energy applied to the plate circuit determines the power output, so does the Mind act to set the frequency and the Emotional Body to furnish the power.

Every time we generate an emotion we start a wave motion in the Fine Media. Such a wave motion can travel infinite distances, and it continues to oscillate until some counteracting wave motion is set up to neutralize the original or until the original wave motion is absorbed by someone or something that is in the proper frequency relation to it.

Just as a radio receiver that is tuned to the exact same frequency as a transmitter acts as if it were connected via some invisible medium to the transmitter by responding exactly as the transmitter is activated, so does a specimen of certain things act as if there were a connection between it and the parent body form which it was taken by responding exactly to all activities of the parent body.


At this point, the scoffer usually says, “That’s all bunk!” Suppose we digress a moment and see to whom he directs his verdict of “bunk”.

Almost 20 years ago, Dr Robert Millikan, former president of the California Institute of Technology and Nobel Prize winner in physics for his work in weighing the electron, was speaking before a joint meeting of all the technical societies of Kansas City, MO. He showed a large number of slides, the last of which was a smooth curve with “f” along the left margin and “e” across the bottom. He said, “Some day we will find that each of the elements of material matter vibrates at a frequency, each different from the other.”

The writer was thrilled beyond words because some of the material in this paper had at that time already been discovered.

Years laterm Dr I.I. Rabi of Columbia University won the AAAS prize for his work on nuclear resonance. Quoting from Science News Letter for January 6, 1940, on this work, we read, “Atoms can act like little radio transmitters broadcasting on ultra short waves.”

The Associated Press release of December 30, 1939, went further and said about Dr Rabi’s findings, “Man himself as well as all kinds of supposedly inert matter constantly emit rays. The existence of such rays coming from man and all living things, and probably from the inanimate, has been suspected by a few scientists for many years. Today brought experimental proof. The discovery shows that every atom and every molecule in nature is a continuous radio frequency broadcasting station. Those who believe in telepathy, second sight and clairvoyance, have in today the first real proof of the existence of invisible rays which really travel from one person to another.”

Another Associated Press release next day states, “Scientists who have studied Dr Rabi’s report said it furnishes for the first time a logical explanation of such things as telepathy, heretofore a quasi-scientific phenomenon, and the ‘feeling’ that someone else is approaching in a dark room. It may also prove to be the source of attraction or repulsion between individuals since all the atoms of the body are continually broadcasting weak but detectable radio signals.”

David Sarnoff, president of RCA, speaking before the 7th International Congress on Rheumatic Diseases in New York (June 1, 1949), said, “Men do not understand how their thoughts and emotions are born, and by what power they grow to fruition. Is this force electricity? When we understand each other, is it because we are attuned to each other electrically or electronically? If so, we should learn the electrical characteristics of the human body.”

On March 7, 1951, the Miami Herald (FL) printed a UP release from Copenhagen, Denmark, Agricultural expert Herluf Hansen said, “Any mental disturbance is immediately reflected in the pig sty. Keep your temper, talk friendly to your pigs, and caress them. The financial result will be excellent.”

The same paper on march 16, 1950, carries this, “If beautiful blondes run away at your approach, if dogs growl at you without explanation, cheer up, maybe it’s not your face after all. Might be your body vibrations.”

This is the theory put forward today b y Austrian psychologist Dr Hubert Rochracker, who says, “The human body sends out minute vibrations that, for good or ill, affect all our daily lives.”

Norman Hillier of New York, speaking at a convention of the National hair Dressers and Cosmetologists Association in Des Moines, IA, said, “A quarrel with her husband will have repercussions in milady’s hair in five minutes.” It reduces the life of a permanent.

The United Press (July 7, 1949) under a Paris dateline quotes two Frenchmen, Jules Clate and Andre Coatrieux, “Every metal and every person, living or dead, sends out short waves of different length. Personal wavelengths are as individual as fingerprints. Eventually we hope to develop it for diagnosing disease.”

You are all acquainted with the work of Dr J.B. Rhine of Duke University I extrasensory perception and his study of the mind and the way it can control things. Every doctor has recognized the effect of the emotions upon the physical body. Expression such as “that man gives me a pain” and “this business makes me sick” may be literally true, according to Dr Edward Weiss of Temple University Medical School. “The body has some sort of ‘organ language’ for the outlet of tense emotions, which mimic almost any disease”, said Dr Weiss.

The work of Dr Felix Bloch and his group at Stanford University and by Dr E. M. Purcell and his group at Harvard, the two groups working independently but simultaneously in 1945, confirmed the work of Dr Rabi and carried it further.

Anyone who is interested will find that hardly a week goes by without some press article or technical reference that ties in and touches on some phase of this phenomena.

Eloptic Energy

A form of energy hitherto unknown has been discovered, and a basic patent has been issued covering its use.

The name ELOPTIC has been coined and assigned to the energy. The word is taken from the first two letters of electricity and the word optic, because the energy has some, but not all, of the characteristics of both those forms of energy.

Eloptic energy radiates from or is in some manner given off from, or forms a force field around, everything in our material world under normal conditions at ordinary room temperature and without any treatment of any kind. Each element and combination of elements that make up our material world gives off this energy; however, the energy from each element differs in frequency from the radiation coming from every other element. Thus, we have a means of determining the contents of an unknown material by analyzing the radiations from it without in any way destroying or disturbing the object or material in question, or having to excite it in any manner.

Eloptic energy obeys certain laws just as does electricity, heat and light, and we have uncovered man, but not all, of these laws and have learned much about the utilization of eloptic energy.

Just as electricity in its infancy had few uses because little was known about conductors, insulators, and the laws governing the action of the force, so is the use of eloptic energy today limited only by available technology.

We have barely scratched the surface of the possibilities; however, there are quite a few uses that have been developed and much is already known about the behavior of eloptic energy.

We have identified the radiations from over one-third of the elements of material matter; the ones easily obtained in relatively pure form such as beryllium, carbon, magnesium, aluminum, iron, copper, zinc, silver, tin, tantalum, platinum, gold, lead, bismuth, etc. Carnotite ore has been analyzed for radium and uranium. Many ore samples have been analyzed to determine the various elements contained in them, and the findings have been verified by more extensive chemical, spectrographic or other analytical methods.

Combinations of two or more elements give off a characteristic frequency of radiation by which the combination may be identified. For example, hydrocarbons such as benzene and toluene have been analyzed and the findings verified by spectrographic and chemical analysis.

Each of the tissues of the body give off a characteristic frequency of radiation by which it can be identified and the virility or vitality of the tissue may be determined by noting the intensity of the radiation.

Each disease entity gives off a characteristic emanation by which its presence in the body and something of its virility may be determined.

Eloptic energy can be conducted along light rays, focused with lenses, refracted with a prism and its effect implanted upon photographic film.

An aerial photograph film taken at several hundred thousand feet elevation can be used to determine what was in the objects photographed on the ground, such as people and metals in buildings, cars, etc.

The apparatus can be set for any elements such as iron, a stylus placed on the spot on the film to be analyzed, the energy implanted on the film can be picked up by the stylus, conducted through the instrument, and if there is the eloptic energy of iron on the film it is evident that there was iron on the ground, radiating the characteristic iron frequency even though not visible to the eye.

Plants can be analyzed to determine whether the root, stem, or fruit contains the elements necessary for proper nutrition, such as iron, copper, manganese and other trace elements. The plant or fruit can also be analyzed to determine whether it contains arsenic or other poisons from sprays.

Foods, poisons, drugs, etc., can be checked to determine their effect upon the body or any particular tissue of the body. Those foods or drugs to which a person is allergic and those which are compatible can be quickly identified.

Just as a photograph can hold the emanation of the object photographed, so can a specimen, an article of clothing, a drop of blood, urine or perspiration carry the emanations of the person from whence it came.

Such a specimen will carry all the emanations from all parts of the body of the person from whom the blood was taken. Its emanation and those taken directly from the body of the person will be the same. Thus, many of the characteristics of the person from whom the bloodor clothing came can be determined.

Thus far, only the analytical phase of the utilization of eloptic energy has been discussed, and that only in a very limited way; but it should be evident that eloptic energy has desirable applications in the fields of: (1) Laboratory chemical analysis, (2) Mining, (3) Prospecting, (4) Medicine, (5) Nutrition, (6) Animal husbandry, (7) Horticulture, (8) Military intelligence, (9) Criminology, and (10) General betterment of humanity.

Naturally, as time goes on and research is continued, many additional uses for eloptic energy will be discovered. We already know that eloptic energy can be generated or picked up from a natural source, filtered, amplified and directed into a tissue of the human body, a plant or animal to produce certain desired effects.


When the eloptic energy from an unknown material is caused to refract through a proper prism, it behaves in the same manner as energy from the visible portion of the spectrum, except that the angles of refraction are much more acute.

It must not be inferred that eloptic radiations and visible light and ultraviolet radiations are the same or related because they all may be refracted through the same prism or that the frequencies are related. Eloptic radiations will behave similarly to the radiations of the electromagnetic spectrum in some respects and entirely different in other respects, showing that they are probably not the same energy at all.

For this reason I prefer to call it the Finer Media.

A 31.5°  glass prism with an index of refraction of 1.505 was used in one experiment (see circular coordinate chart). Eloptic energy from a number of elements was caused to enter the prism at an angle of incidence of 5.5° .

Using the face of the prism as “0”, carbon (element # 6) refracted at an angle of 18.25° to the face of the prism, and bismuth (element # 83) at 48.25°. Later, hydrogen gas was found to refract at 16.45°, a range of 31.8° for 83° of the elements of the material world.

Another arrangement employing a 24°  prism with an angle of incidence of 17° showed hydrogen approximately 7° from the face of the prism, and bismuth at 62.3°, or a range of 5.3° for the same 83 elements.

A 19 black plexiglass prism of 1.847 index of refraction with an angle of incidence of 19 allowed bismuth to refract through at approximately 65.7° and carbon at 12.15°. All of the angles were measured with a protractor in a somewhat crude way because of the construction of the apparatus, but they are very close to being correct.

If a 90° arc is drawn with the center at the point of eloptic energy emergence at the face of the prism, between a line projected out in the direction along the face of the prism, it will be found that all of the radiations are refracted out in this quadrant (see Prism Refractor sketch). If the arc of the quadrant is divided into 1600 parts with “0” on the line extending along the face of the prism and 1600 on the line perpendicular to the face of the prism, then it will be found that with a certain apparatus arrangement, one of the isotopes of beryllium (Atomic # 4) refracts through at approximately 186 on the scale and that bismuth (Atomic # 83) refracts through at 1097 on the scale, and all of the other elements and their various isotopes refract through in their proper relationship, the one having the lowest nuclear weight indicating a higher frequency and a more acute angle of refraction, and the one with a heavier nuclear weight indicating a lower frequency and emerging at a less acute angle. The tests show that eloptic energy obeys some of the laws of refraction just as does the visible portion of the electromagnetic spectrum.


Radiation from the Nuclei of Elements

A series of experiments has been carried out that points rather conclusively to the assumption that the radiation that comes from the various pure elements is from the entire nucleus and not from the planetary electrons or from either the neutrons or the protons alone.

The best obtainable pure specimens of the elements Titanium, Vanadium, Chromium, Manganese, Iron and Nickel were used. Tests were run on Radiation Analyzer # 508. Energy peaks from these elements were measured and the prism dial settings for each peak were noted. A study of the number of energy peaks for the various elements indicated that the number coincided in most case with the number of isotopes of the respective elements.

One important item was that one of the peaks for chromium and one for titanium were very close together; that is, they refracted through the prism at near the same angle. The same for another peak of chromium and one for iron, and another for an iron peak and a nickel peak.

The number of protons in each of the isotopes was multiplied by their individual mass weight of 1.00758 and the number of neutrons were multiplied by their individual mass weight of 1.00894 and the two products added to get a factor representing the differnce in two isotopes of the same nuclear particles but with a different number of neutrons and protons in each nuclei.

Thus, titanium with 22 protons and 28 neutrons has a factor of 50.41708, while chromium with 24 protons and 26 neutrons has a factor of 50.41436, a difference of 0.00272, chromium being the lighter, in nuclear weight.

Titanium = ( 22 x 1.00758 ) + ( 28 x 1.00894 ) = 50.41708
Chromium = (24 x 1.00758 ) + ( 26 x 1.00894 ) = 50.41436
Difference = 0.00272

These factors and the prism dial settings were  used to produce the curve shown (Nuclear Weight Factor vs Prism Angle). One outstanding fact noted was that the lighter the factor value, the lower the dial setting or higher the frequency of the emanating energy. Another was the smoothness of the curve. Nearly all points are in proper relationship. Irregularities are probably due to slight variations from a true flat of the prism surface.

While plotting this curve, it was noted that in a few cases, there were apparently too many energy peaks for some of the elements. Further study revealed that there were radioactive isotopes of the so-called man-made variety that would fit into these spots. It had already been noted that known radioactive elements gave a much more violent radiation than the so-called stable variety. Tests were then made on the various isotopes to determine the distance that the radiation, or rather, the force field, seemed to extend out from the specimen. Vanadium showed that the three isotopes radiated 18.5″, 5.5″, and 15.5″ respectively, indicating that apparently the middle one was the stable one and the other two were radioactive. The same thing was done for Iron and the distances were 16.5″, 8.5″, 17″, 13″ and 10″ respectively. This looked like there might be a discrepancy as there should not be a radioactive isotope at the point of higher degree of radiation. A reference to the percentage of material usually found in the various isotopes showed that the isotope that radiated 17″ was the one that runs about 90.2% prevalence. It could be that some of the iron of this weight was radioactive or there might have been some contamination from manganese which has a radioactive isotope of the same weight.

After this same procedure had been followed for all the places where there might be a question, and everything seemed to fall into proper place, it was decided to try it on elements at the heavy end of the list. Bismuth showed four isotopes in a row with radiation distances as follows: 13″ for the stable and lightest isotope, and 24.5″, 22″, and 26″, respectively, for the radioactive isotopes. Then a gold link bracelet of very old gold, an heirloom made before the days of so much alloying, was used. The lightest was the stable isotope with a radiation distance of 6″, with two others of 12.75″ and 14.5″ for the two radioactive isotopes.

Molecular Combinations

The field of exploration into molecular combinations is too vast to be covered in this paper. In fact, not enough work has been done to warrant such detail.

The chief chemist of the analytical laboratory of a large corporation learned, through a mutual friend, about some of our work while the patent application was being processed in Washington and were not too anxious to divulge much information, but after several letters we agreed to help him. One of his letters said, “We have recently expanded into a new field of research and some of the problems encountered are giving us a great deal of trouble. Your apparatus may be the answer.”

We allowed him to bring his specimens to our laboratory and we spent two days with him, most of the time in getting equipment ready for the tests. Finally, we analyzed the contents of four bottles marked A1, A2, A3, A4. We had no idea beforehand what was in them.

We poured a small quantity of liquid from bottle A1 into a pyrex beaker, placed it in the instrument, and proceeded to “tune in” to all the “broadcasts” that came from the beaker and its contents. Then we did the same for the liquid in bottles A2, A3, and A4. As soon as we had listed the five energy peaks from the empty beaker, six from A1, nine from A2, four from A3and nine from A4, and had charted them with relation to each other, the chemist said, “Now I know my trouble. A1 is a solvent that works fine, A2 is supposed to be the same. Our tests and those of the oil company who sells it to us say it is the same as A1, but it will not work right and is causing us much trouble. It is quite obvious that A2 has been contaminated by A4, which is toluene. A3 is benzene.”

The three contaminants marked (*) were in both solvent A2 and toluene. The empty beaker contained oxygen and boron, silicon and calcium, per Corning Glass Company and a separate spectrographic analysis.

He took a copy of our test data back with him, and in about a month he wrote, “We have finished our chemical and spectrographic analyses on the production solvent samples we tested in your laboratory, and I have gone over the data obtained in your laboratory. Toluene has nine characteristic groupings within the molecule, five of these are unique to toluene and four are also found in the benzene molecule. The data from your laboratory is consistent with these facts.”

Progress to Date

Think of electricity today and then try to picture Ben Franklin with his first “condenser” charged by electricity from a cloud via a kite string. Perhaps some of you remember seeing in museums some of the early day electrical apparatus and how peculiar it appeared. Remember the first crystal detector wireless set you ever saw, and then look at a modern radio installation.

We are just now learning which materials are conductors and which are insulators of eloptic energy. Our present apparatus is very crude compared with what we expect it to be in a few years with the help of physicists who really want to develop this idea.

Our present method of detection depends upon the sense of touch of the operator and that requires training, just as a chemist, a radio operator, a good cook, an artist, all require training. Some day we will have learned more about eloptic energy so we can get it to ring a bell, light a light, or actuate a meter. Until then, we will be dependent upon present methods.

We have been able to impose eloptic energy upon an electric current and amplify it, but since it is not electricity it alone will not operate electrical devices.

So far we have found nothing that does not lend itself to being analyzed as to its elemental content with the exception of the air around us and those materials of which the apparatus is composed, unless there is a fair quantity available.

Despite some of the limitations and apparent crudity of the apparatus and techniques sofar developed, it can do things in the laboratory in a few minutes that are absolutely impossible or may take long periods of time by chemical analysis. It can quickly point the way for chemical analysis to follow in order to eliminate many of the time-taking tests when an unknown is to be analyzed. It is especially valuable where there is only a small quantity of the material available. A drop of unknown liquid will work better than a gallon. The material to be analyzed is on no way changed or destroyed during the analysis. Only the emanation normally radiating from it are utilized.

We are not chemical engineers, physicists or mathematicians, but we have spent over a quarter of a century observing and experimenting, blindly most of the time, to uncover a force or energy or phenomena, about which there had, until recently, been nothing written that we might follow.

When the US Patent Office issues a basic patent with half a dozen method claims covering the use for analysis of an energy that was not mentioned in any acceptable standard text, it should be quite evident that this is not a wild dream of a disordered mind.

Article Sourced from Rex Research