CHAPTER XIII – Radiant Matter

 PART II: Goetheanism – Whence and Whither?

Ernst Lehrs

When man in the state of world-onlooker undertook to form a dynamic picture of the nature of matter, it was inevitable that of all the qualities which belong to its existence he should be able to envisage only those pertaining to gravity and electricity. Because his consciousness, at this stage of its evolution, was closely bound up with the force of gravity inherent in the human body, he was unable to form any conception of levity as a force opposite to gravity. Yet, nature is built bipolarically, and polarity-concepts are therefore indispensable for developing a true understanding of her actions. This accounts for the fact that the unipolar concept of gravity had eventually to be supplemented by some kind of bipolar concept.

Now, the only sphere of nature-phenomena with a bipolar character accessible to the onlooker-consciousness ‘was that of electricity. It was thus that man in this state of consciousness was compelled to picture the foundation of the physical universe as being made up of gravity and electricity, as we meet them in the modern picture of the atom, with its heavy electro-positive nucleus and the virtually weightless electro-negative electrons moving round it.

Once scientific observation and thought are freed from the limitations of the onlooker-consciousness, both gravity and electricity appear in a new perspective, though the change is different for each of them. Gravity, while it becomes one pole of a polarity, with levity as the opposite pole, still retains its character as a fundamental force of the physical universe, the gravity-levity polarity being one of the first order. Not so electricity. For, as the following discussion will show, the electrical polarity is one of the second order; moreover, instead of constituting matter as is usually believed, electricity turns out to be in reality a product of matter.


We follow Goethe’s line when, in order to answer the question, ‘What is electricity?’ we first ask, ‘How does electricity arise?’ Instead of starting with phenomena produced by electricity when it is already in action, and deriving from them a hypothetical picture, we begin by observing the processes to which electricity owes its appearance. Since there is significance in the historical order in which facts of nature have come to man’s knowledge in the past, we choose as our starting-point, among the various modes of generating electricity, the one through which the existence of an electric force first became known. This is the rousing of the electric state in a body by rubbing it with another body of different material composition. Originally, amber was rubbed with wool or fur.

By picturing this process in our mind we become aware of a certain kinship of electricity with fire, since for ages the only known way of kindling fire was through friction. We notice that in both cases man had to resort to the will-power invested in his limbs for setting in motion two pieces of matter, so that, by overcoming their resistance to this motion, he released from them a certain force which he could utilize as a supplement to his own will. The similarity of the two processes may be taken as a sign that heat and electricity are related to each other in a certain way, the one being in some sense a metamorphosis of the other. Our first task, therefore, will be to try to understand how it is that friction causes heat to appear in manifest form.

There is no friction unless the surfaces of the rubbed bodies have a structure that is in some way interfered with by the rubbing, while at the same time they offer a certain resistance to the disturbance. This resistance is due to a characteristic of matter, commonly called cohesion. Now we know that the inner coherence of a physical body is due to its point-relationship, that is to the gravitational force bound up with it. Indeed, cohesion increases as we pass from the gaseous, through the liquid, to the solid state of matter.

Whilst a body’s cohesion is due to gravity, its spatial extendedness is, as we have seen, due to levity. If we reduce the volume of a piece of physical matter by means of pressure, we therefore release levity-forces previously bound up in it, and these, as always happens in such cases, appear in the form of free heat. Figuratively speaking, we may say that by applying pressure to matter, latent levity is pressed out of it, somewhat like water out of a wet sponge.

The generation of free heat by friction rests on quite similar grounds. Obviously, friction always requires a certain pressure. This alone, however, would not account for the amount of heat easily produced by friction. To the pressure there is in this case added a certain measure of encroachment upon the unity of the material substance. In the case of friction between two solid bodies, this may go so far that particles of matter are completely detached from the cohesive whole. The result is an increase in the number of single mass-centres on the earth, as against the all-embracing cosmic periphery. This diminishes the hold of levity on the total amount of physical matter present on the earth. Again, the levity thus becoming free appears as external heat. (In the reverse case when, for instance through melting, a number of single physical bodies become one, free heat becomes latent.)

Both the diminishing of spatial extension and the breaking up of a whole into parts entail an increase in the quality ‘dry’. This applies not only in the sense that the parts which have become independent units are ‘dry’ in relation to each other – formerly coherent matter being turned into dust – but also in the other sense, and one valid in both cases, that levity and gravity are losing part of their previous inter-connexion. If this twofold process of ‘becoming dry’ reaches a certain intensity, the substances concerned, provided they are inflammable, begin to burn, with the result that dry heat escapes and dry ash is formed. We note that in each case we are dealing with a change in the relationship between the poles of a polarity of the first order.

We will now apply this picture of the process of friction to the instance when, as a result of this action, electricity appears.

Originally the evoking of the electric condition was ascribed solely to the nature of amber, the only substance known to possess this property. To-day we know that not the amber alone, but its coming together with another substance of different nature, in this instance an animal substance of the nature of hair or silk, is required. Whatever substances we use for friction, they must always be different in nature, so as to allow both kinds of electricity to appear at once. Which of the two kinds imposes its presence the more strongly upon the observer depends on purely extraneous conditions which have nothing to do with the process itself.

Obviously, if we wish to understand the qualitative difference between the two kinds of electricity, we must investigate the qualitative difference in the material substances, which give rise to electricity when they are rubbed together. We shall again follow the historical line by examining the two substances which first taught man the polar nature of electricity. They are glass and resin, after which, as we mentioned, the two electricities were even named in the beginning.

Our functional conception of matter, developed earlier (Chapter XI), allows us to recognize in these two substances representatives of the Salt-Sulphur polarity. Indeed, glass as a mineral substance, which actually owes its specific character to the presence of silicon in it, clearly stands on the phosphoric-crystalline side, while resin, being itself a sort of ‘gum’, on the sulphurous-volcanic side. In fact, sulphur itself was soon found to be a particularly suitable substance for producing ‘resin’-electricity.

Now the usual way of producing one kind of electricity is by rubbing resin (or sulphur, or ebonite) with wool or fur, and the other by rubbing glass with leather. At first sight, it does not seem as if the two counter-substances represent the required alchemic counter-poles to resin and glass. For both hair and leather are animal products and therefore seem to be of like nature. Closer inspection, however, shows that they do obey the rule. For hair, like all horny substances, is a dead product of external secretion by the animal organism. An ur-phenomenal example of it, showing its kinship to glass-like substances, is the transparent cornea of the eye, close to the crystal-lens. Leather, on the other hand, is a product of the hypodermic part of the body and, as such, belongs to those parts of the organism which are filled with blood, and, therefore, permeated with life. (Note as a characteristic of leather that it requires a special treatment, tanning, to make it as immune from decay as hair is by nature.) Hair and leather, therefore, represent in themselves a salt-sulphur polarity, and thus fulfil the corresponding function when brought together with resin or glass respectively.

What is true for the particular substances which originally led man to discover the dual nature of electricity, holds good equally for any pair of substances capable of assuming the electric state when rubbed against each other. If we examine from this point of view the series of such substances, as usually given in the textbooks on electricity, we shall always find a substance of extreme salt-character at the one end, and one of extreme sulphur-character at the other, the substances as a whole forming a gradual transition from one extreme to the other. Which kind of electricity appears on each, when submitted to friction, depends on whether the counter-substance stands on its right or left, in the series. It is the particular relation between the two which makes them behave in one way or the other.

There are cases which seem to elude this law, and investigation has shown that other characteristics of the rubbed bodies, such as surface quality, can have a modifying influence. For lack of a guiding idea they are treated in the textbooks as ‘irregularities’. Observation led by a true polarity concept shows that in these cases also the rule is not violated. In this respect, interesting information can be gained from the observations of J. W. Ritter (1776-1810), an ingenious Naturphilosoph from the circle round Goethe, but to whom, also, physical science is indebted for his discovery of the ultra-violet part of the spectrum and of galvanic polarization. Among his writings there is a treatise on electricity, giving many generally unknown instances of frictional electricity which are in good accord with our picture and well worth investigating. According to Ritter, even two crystalline substances of different hardness, such as Calcite and quartz, become electric when rubbed together, the softer playing the part of ‘resin’ and the harder that of ‘glass’.

These few facts connected with the generation of frictional electricity are enough to allow us to form a picture of the nature of the polarity represented by the two kinds of electricity.

We remember that in the case of the generation of heat through friction, as a result of an encroachment upon the cohesion of the material body involved, the relationship between levity and gravity in it changes from ‘moist’ to ‘dry’ and that the effect of this is the appearance of ‘fire’ and ‘dust’ as poles of a primary polarity. This process, however, is altered when the bodies subjected to friction are opposed to each other in the sense of a salt-sulphur polarity. The effect then is that the liberated levity, under the influence of the peculiar tension between the two bodies, remains bound in the realm of substance and becomes itself split up polarically.

Clearly, then, in the case of electrical polarity we encounter a certain form of gravity-bound levity, and this in a twofold way. Owing to the contrasting nature of the two bodies involved in the process, the coupling of gravity and levity is a polar one on both sides. The electrical polarity thus turns out to be itself of the nature of a secondary polarity.

Two more recently discovered means of evoking the electric condition in a piece of matter confirm this picture. They are the so-called piezo-electricity and pyro-electricity. Both signify the occurrence of the electrical polarity at the two ends of an asymmetrically built (hemimorphous) crystal, as the result of changing the crystal’s spatial condition. In piezo-electricity the change consists in a diminution of the crystal’s volume through pressure; in pyro-electricity, in an increase of the crystal volume by raising its temperature. The asymmetry of the crystal, due to a one-sided working of the forces of crystallization, plays the same role here as does the alchemic opposition between the two bodies used for the production of frictional electricity.


It is typical of the scientist of the past that he was dependent on phenomena brought about by a highly developed experimental technique for becoming aware of certain properties of the electrical force, whereas for the realistic observer these properties are revealed at once by the most primitive electric phenomena. We remember Eddington’s description of the positron as ‘negative material’, and his subsequent remarks, which show the paradoxical nature of this concept if applied to the hypothetical interior of the atom (Chapter IV). The quite primitive phenomenon of electrical repulsion and attraction shows us the same thing in a manner of which it is not difficult to form a conception.

Modern physics itself, with the help of Faraday’s field-concept, describes these phenomena as caused by pressure – resulting from the meeting in space of two similar electrical fields – and suction – resulting from the meeting of two dissimilar fields. In the first case the space between the two electrically charged bodies assumes a degree of density, as if it were filled with some elastic material. In the second instance the density of the space where the two fields intermingle is lower than that of its surroundings. Here, clearly, we have a state of negative density which acts on the electrically charged bodies just as a lowering of pressure acts on a gas: in both cases movement occurs in the direction leading from the higher to the lower density. Electricity thus shows itself capable of producing both gravity and levity effects, thereby once more confirming our picture of it.


Our next task will be to examine the galvanic form of generating electricity, in order to gain further light on our picture of the electrical polarity.

Galvanism, as it became established through Volta’s work, rests on certain properties of the metallic substances of the earth. Compared with the substances which may be used for producing electricity through friction, the metals hold a mid-position. They are all essentially mercurial substances. (In quicksilver, which for this reason was given the name ‘mercury’ by the alchemists, this fact comes to an ur-phenomenal appearance.) Among the many facts proving the mercurial nature of the metals, there is one of particular interest to us. This is their peculiar relationship to the processes of oxidation and reduction.

Metals, in their metallic state, are bearers of latent levity, which can be set free either through combustion or through corrosion. They differ from one another by their relative degree of eagerness to enter into and remain in the metallic, that is, the reduced state, or to assume and keep the state of the oxide (in which form they are found in the various metallic oxides and salts). There are metals such as gold, silver, etc., for which the reduced state is more or less natural; others, such as potassium, sodium, etc., find the oxidized state natural and can be brought into and kept in the reduced state only by artificial means. Between these extremes there are all possible degrees of transition, some metals more nearly resembling the ‘noble’, others more nearly the ‘corrosive’, metals.

We remember that it was the different relationship of sulphur and phosphorus to reduction and oxidation which led us to envisage them as ur-phenomenal representatives of the alchemic polarity. We may therefore say that there are metals which from the alchemic point of view more nearly resemble sulphur, others more nearly phosphorus, whilst others again hold an intermediary position between the extremes. It is on these differences among the various metals that their galvanic properties are based.

Let us from this point of view contemplate the following series of chemical elements, which is a representation of the so-called voltaic series:

Graphite, Platinum, Gold, Silver, Copper, Iron, Tin, Lead, Zinc, Aluminium, Magnesium, Sodium, Potassium.

Any two of these metals constitute a voltaic cell. Its electromotive force is determined by the distance in the series between the metals used. Just as in the case of frictional electricity, the kind of electricity which is supplied by a certain metal depends on whether the other metal with which it is coupled stands to the right or to the left of it in the series.1

Let us now see what happens in a galvanic cell when the two different metals are simultaneously exposed to the chemical action of the connecting fluid. Each metal by itself would undergo oxidation with greater or less intensity, and the calorific energy hidden in it would become free in the form of heat. This process suffers a certain alteration through the presence of the second metal, which sets up an alchemic tension between the two. Instead of a proper segregation of the primary polarity, heat-dust (in this case, heat-oxide), the heat remains matter-bound and appears on the surface of the two metals in a secondarily split form as positive and negative electricity.

The similarity between this process and the frictional generation of electricity is evident.


Our observations have shown that the emergence of the electric state, whether it be caused by friction or galvanically, depends on matter entering into a condition in which its cohesion is loosened – or, as we also put it, on its being turned into ‘dust’ – and this in such a way that the escaping levity remains dust-bound. This picture of electricity now enables us to give a realistic interpretation of certain phenomena which, in the interpretation which the physicist of the past was bound to give them, have contributed much to the tightening of the net of scientific illusion.

Some sixty years after Dalton had established, purely hypothetically, the theory of the atomistic structure of matter, scientific research was led to the observation of actual atomistic phenomena. Crookes found electricity appearing in his tubes in the form of discrete particles, with properties hitherto known only as appertaining to mass. What could be more natural than to take this as evidence that the method of thought developed during the past era of science was on the right course?

The same phenomena appear in quite a different light when we view them against the background of the picture of electricity to which our observations have led. Knowing that the appearance of electricity depends on a process of atomization of some sort, we shall expect that where electricity becomes freely observable, it will yield phenomena of an atomistic kind. The observations of electricity in a vacuum, therefore, yield no confirmation whatsoever of the atomistic view of matter.

The same is true of the phenomena bound up with radioactivity, which were discovered in direct consequence of Crookes’s work. We know that the naturally radioactive elements are all in the group of those with the highest atomic weight. This fact, seen together with the characteristics of radioactivity, tells us that in such elements gravity has so far got the upper hand of levity that the physical substance is unable to persist as a spatially extended, coherent unit. It therefore falls asunder, with the liberated levity drawn into the process of dispersion. Seen thus, radioactivity becomes a symptom of the earth’s old age.


Before entering into a discussion of the question, which naturally arises at this point, as to how levity and gravity by their two possible ways of interaction – ‘sulphurous’ or ‘saline’ – determine the properties of so-called positive and negative electricity, we shall first study the third mode of generating electricity, namely, by electromagnetic induction. Along this way we shall arrive at a picture of the magnetic force which corresponds to the one already obtained of electricity. This will then lead us to a joint study of the nature of electric polarity and magnetic polarity.

The discovery of the phenomena we call electromagnetic depended on the possibility of producing continuous electrical processes. This arose with Volta’s invention. When it became necessary to find a concept for the process which takes place in an electric conductor between the poles of a galvanic cell, the concept of the ‘current’, borrowed from hydrodynamics, suggested itself. Ever since then it has been the rule to speak of the existence of a current within an electric circuit; its strength or intensity is measured in terms of a unit named in honour of Ampere.

This concept of the current has had a fate typical of the whole relation of human thought to the facts connected with electricity. Long after it had been coined to cover phenomena which in themselves betray no movement of any kind between the electrical poles, other phenomena which do in fact show such movements became known through Crookes’s observations. Just as in the case of atomism, they seemed to prove the validity of the preconceived idea of the current. Soon, however, radiant electricity showed properties which contradicted the picture of something flowing from one pole to the other. The cathode rays, for instance, were found to shoot forth into space perpendicularly from the surface of the cathode, without regard to the position of the anode. At the same time Maxwell’s hydrodynamic analogy (as our historical survey has shown) led to a view of the nature of electricity by which this very analogy was put out of court. By predicting certain properties of electricity which come to the fore when its poles alternate rapidly, he seemed to bring electricity into close kinship with light. Mathematical treatment then made it necessary to regard the essential energy process as occurring, not from one pole to the other, but at right angles to a line joining the poles (Poynting’s vector). This picture, however, satisfactory though it was in the realm of high frequency, failed as a means of describing so-called direct-current processes.

As a result of all this the theory of electricity has fallen apart into several conceptual realms lying, as it were, alongside one another, each consistent in itself but lacking any logical connexion with the others. Although the old concept of the electric current has long lost its validity, scientific thought (not to speak of the layman’s) has not managed to discard it. To do this must therefore be our first task, if we want to attain to a realistic picture of electromagnetism.


While keeping strictly to the historical order of things, we shall try first to form a picture of what happens when we connect two electrically charged bodies by a conductor. We know that we rightly describe the change of the dynamic properties of the part of space, in which the two bodies are present, by saying that a certain electric field prevails in it. This field possesses different ‘potentials’ at its various points and so there exists a certain potential difference between the two electric charges. What then happens when a so-called ‘conductor’ is brought into such a field?

From the point of view of the field-concept, conductivity consists in the property of a body not to allow any change of potential along its surface. Such a surface, therefore, is always an equipotential. In the language of alchemy, conductivity is a mercurial property. In the presence of such a body, therefore, no Salt-Sulphur contrasts can obtain. In view of what we found above as the mean position of the metals in the alchemic triad, it is significant that they, precisely, should play so outstanding a role as electrical conductors.

If we keep to pure observation, the only statement we can make concerning the effect produced by the introduction of such a body into the electric field is that this field suddenly disappears. We shall see later in which direction this vanishing occurs. For the present it is sufficient to have formed the picture of the disappearance of the electrical condition of space as a result of the presence of a body with certain mercurial properties.

Nothing else, indeed, happens when we make the process continuous by using a galvanic source of electricity. All that distinguishes a galvanic cell from the sources of electricity used before the time of Volta is its faculty of immediately re-establishing the field which prevails between its poles, whenever this field becomes extinguished by the presence of a conductor. Volta himself saw this quite correctly. In his first account of the new apparatus he describes it as ‘Leyden jars with a continuously re-established charge’. Every enduring electrical process, indeed, consists in nothing but a vanishing and re-establishment of the electrical field with such rapidity that the whole process appears continuous.

Here, also, pure observation of the effect of a conductor in an electric field tells us that its action consists in the annihilation of the field. There is no phenomenon which allows us to state that this process takes place along the axis of the conductor. If we wish to obtain a picture of the true direction, we must consider the condition of space which arises in place of the electric condition that has disappeared.

With the possibility of turning the cancellation of the electrical condition of space into a continuous process, it became possible to observe that the neutralization of electric charges entails the appearance of heat and magnetism. We must now ask which are the qualities of electricity on the one hand, and of heat and magnetism on the other, which account for the fact that where electricity disappears, the two latter forces are bound to appear. Since magnetism is the still unknown entity among the three, we must now deal with it.


Unlike electricity, magnetism was first known in the form of its natural occurrence, namely as a property of certain minerals. If we follow the same course which led us to start our study of electricity with the primitive process of generating it, we shall turn now to the basic phenomenon produced by a magnetic field already in existence. (Only when we have learnt all we can from this, shall we proceed to ask how magnetism comes into being.) Obviously, we shall find this basic phenomenon in the effect of a magnet on a heap of iron filings.

Let us, to begin with, compare a mass of solid iron with the same quantity of it in powdered form. The difference is that the powder lacks the binding force which holds the solid piece together. Now lei us expose the powdered iron to the influence of a magnet. At once a certain ordering principle takes hold of the single particles. They no longer lie at random and unrelated, apart from the inconspicuous gravitational effect they exert on one another, but are drawn into a coherent whole, thus acquiring properties resembling those of an ordinary piece of solid matter.

Read thus, the phenomenon tells us that a part of space occupied by a magnetic field has qualities which are otherwise found only where a coherent solid mass is present. A magnetic piece of solid iron, therefore, differs from a non-magnetic piece by giving rise in its surroundings to dynamic conditions which would otherwise exist only in its interior. This picture of the relatedness of magnetism to solidity is confirmed by the fact that both are cancelled by heat, and increased by cold.2

By its magnetic properties iron thus reveals itself as a substance capable of assuming the condition of solid matter to a degree surpassing ordinary solidity. As an exceptional kind of metal it forms the counter-pole to mercury, in which the solid-fluid condition characteristic of all metallic matter is as much shifted towards the fluid as in iron it is to the solid. (Note in this respect the peculiar resistance of iron to the liquefying effect which mercury has on the other metals.)

This picture of magnetism enables us to understand at once why it must occur together with heat at the place where an electric polarity has been cancelled by the presence of a conductor. We have seen that electricity is levity coupled in a peculiar way with gravity; it is polarized levity (accompanied by a corresponding polarization of gravity). An electric field, therefore, always has both qualities, those of levity and of gravity. We saw a symptom of this in electrical attraction and repulsion, so called; the attraction, we found, was due to negative density, the repulsion to positive density, imparted to space by the electrical fields present there. Now we see that when, through the presence of a conductor, the electrical field round the two opposing poles vanishes, in its place two other fields, a thermal and a magnetic, appear. Clearly, one of them represents the levity-part, the other the gravity-part, of the vanished electric field. The whole process reminds one of combustion through which the ponderable and imponderable parts, combined in the combustible substance, fall apart and appear on the one hand as heat, and on the other as oxidized substance (‘ash’). Yet, between these two manifestations of heat there is an essential qualitative difference.

Although, from our view-point, magnetism represents only one ‘half of a phenomenon, the other half of which is heat, we must not forget that it is itself a bipolar force. Thus, despite its apparent relation to gravity it does not represent, as gravity does, one pole of a primary polarity, with heat as the other pole. Rather must it carry certain qualities of levity which, together with those of gravity, appear in a polarically opposite manner at its two poles. (Details of this will be shown later when we come to investigate the individual qualities of the two poles of magnetism and electricity.) Hence the heat that forms the counterpart to magnetism cannot be pure levity either. As the result of a certain coupling with gravity, it too has somehow remained polarically split.

This can easily be seen by considering the following. Unlike the levity-gravity polarity, in which one pole is peripheral and the other point-centred, both Doles of the electrical polarity are point-centred; both are located in physical space, and thereby determine a definite direction within this space. It is this direction which remains a characteristic of both the magnetic and the thermal fields. The direction of the thermal field as much as that of the magnetic is determined by its having as its axis the conductor joining the poles of the antecedent electrical field. Both fields supplement each other in that the thermal radiation forms the radii which belong to the circular magnetic lines-of-force surrounding the conductor.3

Our picture of the process which is commonly called an electric current is now sufficiently complete to allow us to make a positive statement concerning the direction in which it takes place. Let us once more sum up: In order that this process may occur, there must be present in an electrically excited part of space a body which does not suffer the particular polarization of space bound up with such a field. As a result, the electrical field disappears, and in place of it appear a thermal field and a magnetic field, both having as their axis the line connecting the two poles. Each of them spreads out in a direction at right angles to this fine. Obviously, therefore, it is in this radial direction that the transformation of the electrical into the thermo-magnetic condition of space must take place.

This picture of the electro-thermo-magnetic happening, as regards its direction, is in complete accord with the result obtained (as indicated earlier) by the mathematical treatment of high-frequency phenomena. Once more we see that quite primitive observations, when properly read, lead to findings for which scientific thought had to wait until they were forced on it by the progress of experimental technique – as even then science was left without a uniformly valid picture of the dynamic behaviour of electricity.

Further, we can now see that when we apply electricity to practical purposes, we are in fact seldom using electricity itself, but other forces (that is, other combinations of gravity and levity) which we make effective by making electricity disappear. The same is true of most of the methods of measuring electricity. As a rule, the force which sets the instrument in motion is not electricity but another force (magnetism, heat, etc.) which appears in the place of the vanishing electricity. Thus the so-called intensity of an electric current is actually the intensity with which the electricity in question disappears! Electricity serves us in our machines in the same way that food serves a living organism: it gets itself digested, and what matters is the resulting secondary product.

Just as alterations in the electrical condition of space give rise to the appearance of a magnetic field, any alteration of the magnetic state of space gives rise to the appearance of an electrical field. This process is called electromagnetic induction. With its discovery, the generation of electricity through friction and in the galvanic way was supplemented by a third way. By this means the practical use of electricity on a large scale became possible for the first time. If our picture of the two earlier processes of generating electricity is correct, then this third way must also fit into the picture, although in this case we have no longer to do with any direct atomization of physical matter. Our picture of magnetism will indeed enable us to recognize in electromagnetic induction the same principle on which we found the two other processes to rest.

Magnetism is polarized gravity. Hence it has the same characteristic of tending always to maintain an existent condition. In bodies subject to gravity, this tendency reveals itself as their inertia. It is the inertia inherent in magnetism which we employ when using it to generate electricity. The simplest example is when, by interrupting a ‘primary current’, we induce a ‘secondary current’ in a neighbouring circuit. By the sudden alteration of the electric condition on the primary side, the magnetic condition of the surrounding space is exposed to a sudden corresponding change. Against this the magnetic field ‘puts up’ a resistance by calling forth, on the secondary side, an electrical process of such direction and strength that the entire magnetic condition remains first unaltered and then, instead of changing suddenly, undergoes a gradual transformation which ideally needs an infinite time for its accomplishment (asymptotic course of the exponential curve). This principle rules every process of electromagnetic induction, whatever the cause and direction of the change of the magnetic field.

We know that electromagnetic induction takes place also when a conductor is moved across a magnetic field in such a way that, as the technical term goes, it ‘cuts’ the field’s lines of force. Whereas the process discussed above is employed in the transformer, this latter process is used in generation of electricity by dynamo. We have seen that a magnetic field imparts to the relevant part of space qualities of density which otherwise prevail only in the interior of solid masses. We remember further that the appearance of electricity, in the two other modes of generating it, is caused by the loosening of the coherence of the material substance. A similar loosening of the coherence of the magnetic field takes place when its field-lines are cut by the movement of the conductor across it. Just as heat occurs when we move a solid object through a liquid, electricity occurs when we move a conductor across a magnetic field. In each case we interfere with an existing levity-gravity relationship.

Having established thus far the picture of both electricity and magnetism which shows each as an outcome of certain levity-gravity interactions, we now ask how, in particular, negative and positive electricity on the one hand and north and south magnetism on the other are determined by these interactions. Let us again begin with electricity.

We remember that Galvani was led to his observations by the results of Walsh’s study of the electric fishes. While Galvani clung to the view that in his own experiments the source of the electrical force lay within the animal bodies, Volta saw the fallacy of that. He then conceived the idea of imitating with purely inorganic substances the set-up which Galvani had come upon by accident. The paradoxical result – as he himself noticed with surprise – was that his apparatus turned out to be a close replica of the peculiar organ with which the electric fishes are endowed by nature. We must now take a closer view of this organ.

The electric organ of such a fish consists of many thousands of little piles, each made up of a very great number of plates of two different kinds, arranged in alternating layers. The two kinds differ in substance: in one case the plate is made from a material similar to that present in the nervous system of animals; in the other the resemblance is to a substance present in the muscular system, though only when the muscles are in a state of decay. In this way the two opposing systems of the animal body’ seem to be brought here into direct contact, repeated many thousands of times.

In the electric fishes, accordingly, sensation and will are brought into a peculiar interrelation. For the will-pole is related to its bodily foundation in a manner which otherwise obtains only between the nervous system and the psychological processes co-ordinated with it. These fishes then have the capacity to send out force-currents which produce in other animals and in man ‘concussion of the limbs’, or in extreme cases paralysis and even death. Through describing the process in this way we realize that electricity appears here as metamorphosed animal will, which takes this peculiar form because part of the animal’s volitional system is assimilated to its sensory system in an exceptional manner.

It is known to-day that what nature reveals so strikingly in the case of the electric fish, is nothing but the manifestation of a principle at work in the bodies of all beings endowed with sensation and volition – in corporeal terms, with the duality of a nervous and a muscular system – and therefore at work also in the human body. Observation has shown that the activities of these two systems in man and animal are accompanied by the occurrence of different electric potentials in different parts of the body. Plate A, Fig. iii, shows the distribution of the two polar electric forces in the human body. The bent lines in the diagram stand for curves of equal electric potential. The straight line between them is the neutral zone. As might be expected, this line runs through the heart. What seems less obvious is its slanting position. Here the asymmetry, characteristic of the human body, comes to expression.

If we remember that the nervous system represents the salt-pole, and the metabolic system the sulphur-pole, of the human organism, and if we take into account the relationship between levity and gravity at the two poles, we can see from the distribution of the two electricities that the coupling of levity and gravity at the negative pole of the electrical polarity is such that levity descends into gravity, while at the positive pole gravity rises into levity. Negative electricity therefore must have somehow a ‘spherical’ character, and positive electricity a ‘radial’.

This finding is fully confirmed by electrical phenomena in the realm of nature most remote from man (though it was an effort to solve the enigma of man which led to the discovery of this realm). Since Crookes’s observations of the behaviour of electricity in a vacuum it is common knowledge that only the negative kind of electricity occurs as a freely radiating force (though it retains some properties of inertia), whereas positive electricity seems to be much more closely bound to minute particles of ponderable matter. Here again we find gravity-laden levity on the negative side, levity-raised gravity on the positive.

The same language is spoken by the forms in which the luminous phenomena appear at the two poles of a Crookes tube. Fig. i on Plate A represents the whole phenomenon as far as such a diagram allows. Here we see on the positive side radial forms appear, on the negative side planar-spherical forms. As symbols of nature’s script, these forms tell us that cosmic periphery and earthly centre stand in a polar relation to each other at the two ends of the tube. (Our optical studies will later show that the colours which appear at the anode and cathode are also in complete accord with this.)

At this point in our discussion it is possible to raise, without risk of confusing the issue, the question of the distribution of the two electric forces over the pairs of substances concerned in the generation of electricity both by friction and in the galvanic way. This distribution seems to contradict the picture to which the foregoing observations have led us, for in both instances the ‘sulphurous’ substances (resin in one, the nobler metals in the other) become bearers of negative electricity; while the ‘saline’ substances (glass and the corrosive metals) carry positive electricity. Such a criss-crossing of the poles-surprising as it seems at first sight – is not new to us. We have met it in the distribution of function of the plant’s organs of propagation, and we shall meet a further instance of it when studying the function of the human eye. Future investigation will have to find the principle common to all instances in nature where such an interchange of the poles prevails.

While the electric field arising round an electrified piece of matter does not allow any recognition of the absolute characteristics of the two opposing electrical forces, we do find them revealed by the distribution of electricity in the human body. Something similar holds good for magnetism. Only, to find the phenomena from which to read the absolute characteristics of the two sides of the magnetic polarity, we must not turn to the body of man but to that of the earth, one of whose characteristics it is to be as much the bearer of a magnetic field as of gravitational and levitational fields. There is significance in the fact that even to-day, when the tendency prevails to look for causes of natural phenomena not in the macrocosmic expanse, but in the microscopic confines of space, the two poles of magnetism are named after the magnetic poles of the earth. It indicates the degree to which man’s feeling instinctively relates magnetism to the earth as a whole.

In our newly developed terminology we may say that magnetism, as a polarity of the second order, represents a field of force both of whose poles are situated within finite space, and that in the macro-telluric mother-field this situation is such that the axis of this field coincides more or less with the axis of the earth’s physical body. Thus the magnetic polarization of the earth as a letter in nature’s script bids us rank it alongside other phenomena which in their way are an expression of the earth’s being polarized in the north-south direction.

The Austrian geographer, E. Suess, in his great work The Countenance of the Earth, first drew attention to the fact that an observer approaching the earth from outer space would be struck by the onesided distribution and formation of the earth’s continents. He would notice that most of the dry land is in the northern hemisphere, leaving the southern hemisphere covered mainly with water. In terms of the basic elementary qualities, this means that the earth is predominantly ‘dry’ in its northern half, and ‘moist’ in its southern.

In this fact we have a symbol which tells us that the earth represents a polarity of the second order, with its ‘salt’-pole in the north and its ‘sulphur’-pole in the south. Hence the magnetism called ‘North’ must be of saline and therefore spherical nature, corresponding to the negative pole in the realm of electricity, while ‘South’ magnetism must be of sulphurous – i.e. radial-nature, corresponding to positive electricity. Moreover, this must hold good equally for the fields of magnetic force generated by naturally magnetic or artificially magnetized pieces of iron. For the circumstance that makes a piece of matter into a magnet is simply that part of the general magnetic field of the earth has been drawn into it. Of especial interest in this respect is the well-known dependence of the direction of an electrically produced magnetic field on the position of the poles of the electric field.


The insight we have now gained into the nature of electricity has led us to the realization that with every act of setting electromagnetic energies in motion we interfere with the entire levity-gravity balance of our planet by turning part of the earth’s coherent substance into cosmic ‘dust’. Remembering our picture of radioactivity, in which we recognized a sign of the earth’s old age, we may say that whenever we generate electricity we speed up the earth’s process of cosmic ageing. Obviously this is tremendously enhanced by the creation of artificial radioactivity along the lines recently discovered, whereby it has now become possible to transmute chemical elements into one another, or even to cancel altogether their gravity-bound existence.

To see things in this light is to realize that with our having become able to rouse electricity and magnetism from their dormant state and make them work for us, a gigantic responsibility has devolved upon mankind. It was man’s fate to remain unaware of this fact during the first phase of the electrification of his civilization; to continue now in this state of unawareness would spell peril to the human race.

The fact that modern science has long ceased to be a ‘natural’ science is something which has begun to dawn upon the modern scientific researcher himself. What has thus come to him as a question finds a definite answer in the picture of electricity we have been able to develop. It is again Eddington who has drawn attention particularly to this question: see the chapter, ‘Discovery or Manufacture?’ in his Philosophy of Physical Science. It will be appropriate at this point to recall his remarks, for they bear not only on the outcome of our own present discussion, but also, as the next chapter will show, on the further course of our studies.

Eddington starts by asking: ‘When Lord Rutherford showed us the atomic nucleus, did he find it or did he make it?’ Whichever answer we give, Eddington goes on to say, makes no difference to our admiration for Rutherford himself. But it makes all the difference to our ideas on the structure of the physical universe. To make clear where the modern physicist stands in this respect, Eddington uses a striking comparison. If a sculptor were to point in our presence to a raw block of marble saying that the form of a human head was lying hidden in the block, ‘all our rational instinct would be roused against such an anthropomorphic speculation’. For it is inconceivable to us that nature should have placed such a form inside the block. Roused by our objection, the artist proceeds to verify his theory experimentally – ‘with quite rudimentary apparatus, too: merely using a chisel to separate the form for our inspection, he triumphantly proves his theory.’

‘Was it in this way’, Eddington asks, ‘that Rutherford rendered concrete the nucleus which his scientific imagination had created?’ One thing is certain: ‘In every physical laboratory we see ingeniously devised tools for executing the work of sculpture, according to the designs of the theoretical physicist. Sometimes the tool slips and carves off an odd-shaped form which he had not expected. Then we have a new experimental discovery,’

To this analogy Eddington adds the following even more drastic one: ‘Procrustes, you will remember,’ he says, ‘stretched or chopped down his guests to fit the bed he constructed. But perhaps you have not heard the rest of the story. He measured them up before they left the next morning, and wrote a learned paper On the Uniformity of Stature of Travellers for the Anthropological Society of Attica.’


Besides yielding a definite answer to the question of how far the seemingly discovered facts of science are manufactured facts, our newly won insight into the nature of the electric and magnetic polarties throws light also on the possibility of so handling both that their application will lead no longer to a cancellation, but to a true continuation, of nature’s own creative deeds.

An example of this will appear in the next part of our studies, devoted to observations in the field of optics.

Article Source :

Archived Here :

1 Note that the series starts on the left with graphite, i.e. with carbon. This substance appears here as a metal among metals, and indeed as the most ‘noble’ of all. Electricity in this way reveals a secret of carbon well known to the mediaeval alchemist and still known in our day to people in the Orient.2 There is even a gas which assumes magnetic properties when exposed to extreme cold-oxygen in the solid state.3 By watering plants with water that had been exposed to heat from different sources, E. Pfeiffer has shown in the chemical laboratory of the Goetheanum that heat engendered by means of electricity is ‘dead’ heat. It follows that it is not the same for human health whether the heat used for cooking or heating purposes is obtained by burning wood or coal, or by means of electricity.