Seed of Knowledge, Stone of Plenty

Understanding the Lost Technology of the Ancient Megalith-Builders
by John Burke & Kaj Halberg

Acknowledgements
Introduction
Chapter 1: The Lost World
Chapter 2: Harnessing Nature’s Electromagnetic Energy

Book Sourced from: https://kajhalberg.dk/en/books/seed-of-knowledge-stone-of-plenty/

 

Table of Contents:

Find the full book in PDF HERE

Acknowledgements

First and foremost, we wish to thank Dr. W.C. ‘Lefty’ Levengood whose work was vital to this volume. For information, comments, suggestions, lending us photographs, or helping us in different ways, our warmest thanks go to the following persons: Dave Barron, Nancy Burson, Judy Chiang, Dr. Bruce Cornet, Carol and Bill Cote, Jiri Dvorak, Starr Fuentes, Dr. Geoff Groom, Rosemary Ellen Guiley, Lois Horowitz, Phil Imbrogno, James and Shelley Keel, Søren Lauridsen, Dr. Brad Lepper, Glenna Levengood, Alex Patterson, Roberta Pulhalski, Ed Sherwood, Roslyn Strong, Nancy Talbott, and Anastasia Wietrzychowski.

Introduction

The mists hanging heavily over the rain forest canopies of Meso-America are the mists of time, for they serve as a nebulous shroud for peoples whom time forgot. Only the peaks of their greatest creations – towering limestone pyramids – pierce the shroud and whisper of life. At many other places around the world, huge earthen mounds or stone structures are silent sentinels from times, cultures, and knowledge long since gone – in Illinois, France, England, Bolivia, and Egypt to mention but a few.

Today, these structures beckon us to them. When were they built? Who built them? And why? Archaeologists have long since revealed when and who. The why, however, has often been guesswork.

One of the hardest parts of investigating something that was built before writing was developed, is trying to find evidence of how the people who built it actually used it. The literature of Stonehenge and hundreds of other ancient megalithic sites usually states that these structures were used for ceremonial purposes, probably of a spiritual nature.

However, the ‘ceremonial site’ label is simply an interpretation that has, over time, become enshrined as fact. Among academics working in the field, no one could think of any practical use for a Stonehenge or a pyramid. So, if they were devoid of practical purpose, they must have been used only for ceremony. This reasoning has become so ingrained in our view of prehistory that these structures are often referred to as ‘sacred sites.’

We need to remember that we view these sites through the tinted glasses of our own culture, which divorces the spiritual from the practical.

For example, consider the 20th Century’s largest structures. Hydroelectric dams are probably the biggest structures humanity has built to date. And why did we build them? Even someone who had no acquaintance with turbine-generated electricity could surmise that these structures are important to our society by the effort we put into them.

We know very well why we are willing to invest huge amounts of money, labor, and time in erecting these dams. We made this very physical effect because the return was worth it, in very physical terms. From these dams we gain electricity, the lifeblood of an industrial civilization.

What if our pre-industrial ancestors also invested huge amounts of labor and time to erect enormous creations of stone and earth because it quite simply was worth it, in physical terms? What if the pyramids, mounds, and henges paid their builders back by producing fertilitythe lifeblood of every agricultural civilization?

In many cases, we have well-documented evidence that these structures were dedicated to fertility gods or contained symbols and tokens associated with fertility, but they may have actually worked as mechanisms for increasing crop yields.

What if you knew that many of these monuments do in fact produce physical effects, even today? What if you knew that they were built on ground where certain natural electromagnetic energies are concentrated, and designed in such a way as to further concentrate these energies? Finally, what would you say if you knew that pyramids, henges, and mounds were usually built only after a food crisis arose, and that the way they concentrated these energies had the end result of producing more food?

Consider the following facts:

  • Megalith building seems to have begun in each country only after there was a crisis of agricultural productivity, and famine loomed. The builders of mounds, pyramids, and henges were often fighting for survival when construction began, yet archaeological evidence shows they got wealthy soon after the buildings had been completed.

  • Experiments by academics in Europe have shown that the slash-and-burn agriculture, known to be employed when these megaliths and mounds were built, will exhaust the soil in three years. Yet ancient European farmers somehow got satisfactory production for seven years or more in the same fields, without the as yet-to-be-discovered help of fertilizer or crop rotation. Experts know that it was done, but cannot explain how. Something similar was true for the Mayans in Meso-America. Their agriculture fed millions of people in the Yucatan Peninsula, which today can barely support a hundred thousand. Before the Inca, a little-known Andean culture seems to have tapped earth energies to produce a similar effect, growing bountiful crops in the harsh altiplano, where farmers struggle to get by today.

  • In England, excavations at causewayed enclosures and henges showed that emmer wheat had been carefully cleaned of all weed seeds before being brought to the site and placed at the causeway’s ditch. This was wheat as seed, not as food. Throughout Europe, for a thousand years, such enclosures were sited on ground above subterranean geological structures, which generate natural electrical ground current, of the same kind we found linked to improved seed performance on Mayan pyramids in Guatemala.

  • In North America, hundreds of mounds were built by tribes of the loose-knit group called the Mississippian Culture. Most of these mound-building peoples vanished long before Europeans arrived. However, during the white settlement age, the Natchez tribe still used mounds, and in 1730 a French Jesuit missionary wrote home to his superior to say that no Natchez farmer would dream of planting his seed without first bringing it to the top of the mound for certain ‘blessings’. Something similar was true for the Aztecs.

  • In the original American mound-building culture, the Olmec of Mexico, villages with mounds enjoyed a higher standard of living than otherwise identical villages without mounds a few miles down the same river.

  • Today, Mayan farmers still bring their seed to the top of certain pyramids in Guatemala.

  • Our own experiments, which we invite you to copy, have shown that seed of ancient varieties, which are still produced today, if left for a time in the air at such ancient structures, often grow faster and more vigorously, while producing up to double or triple the amount of food. Corn seeds, placed by us on one of the oldest Meso-American pyramids grew dramatically better, particularly if placed there on days of high electric energies. Seeds that we placed on North American Indian mounds showed dramatically improved growth, especially when lightning storms were nearby.

  • 21st-Century seed treatments, using contemporary versions of the same electrical energies present at the megaliths have achieved the same effects that we have observed in seed placed at those ancient sites: faster growth, higher germination percentage, better stress tolerance, and higher yields. These results have been confirmed many times by universities and agricultural organizations.

You need not take our word for these facts; you can confirm them for yourself today, without so much as a trip overseas. These structures are so widespread in America that two thirds of the population live within a few hours’ drive of one. Anyone who wishes can confirm or refute our findings with the information provided on this page.

My research has taken Kaj and me on a journey to remote places and times. In the following chapters, we shall take you to such sites in both North and South America. We shall look at how these energies arise everywhere from natural forces, how they could have been detected by the ancient builders (or you), and how these energies affect seed in a way that increases food production. Then we shall travel back in time to Europe and beyond to see how generations of archaeologists have unearthed mountains of evidence that are entirely consistent with this new understanding of ancient technology. Take the journey with us, and you be the judge.

~ John Burke, July 2005

Chapter 1: The Lost World

“However, other Mayan areas, such as the well-studied cities of Copan and Tikal, show little archeological evidence of terracing, irrigation, or raised or drained field systems. Instead, their inhabitants must have used archeologically invisible means to increase food production.”
Jared Diamond 2004. Collapse: How Societies Choose to Fail or Succeed. Viking Press
In the dark tropical night, the dense Guatemalan rain forest of Tikal loomed over us. Decaying vegetation emitted a distinct smell, mixed with the fragrance from flowers and herbs. Insects called incessantly, and a coughing roar announced that a jaguar was on the prowl.

Even at 3:30 in the morning, our clothing was drenched in sweat and stuck to our bodies. Head lamps on, instruments in hand, Geoff, Kaj and I wound single file through the undergrowth up the jungle trail. We had been walking uphill at top speed for thirty minutes behind Luis, our guide. To catch our breath, we sat down on a wall between the famous King’s and Queen’s Pyramids (Fig. 1), brooding silently in a moonlit fog.

Re-entering the pitch-dark rain forest, we climbed the winding trail, emerging onto a small plateau, known as El Mundo Perdido (‘The Lost World’). At this moment, the readings of airborne electric charge, recorded by our electrostatic voltmeter, suddenly leapt way beyond anything we had ever measured before.

With the deep-throated roars of howler monkeys surrounding us in the pre-dawn darkness, we watched with some alarm the already striking readings growing even stronger as we approached the Lost World Pyramid (Fig. 2), then rising again as we ascended its oversize steps. In a flash we realized that our hunch had been right.


Fig. 1. These Mayan ruins in Tikal are the so-called Great Jaguar’s Temple, or Queen’s Temple (left), and Temple II, or King’s Temple. (Photo copyright © by Kaj Halberg)
Fig. 2. This highly energetic, flat-topped pyramid in Tikal, known as El Mundo Perdido (‘The Lost World’), was the first stone structure built here in the first of Mayan cities. (Photo copyright © by Kaj Halberg)
Why were the giant megaliths built?
We had come to Guatemala towards the end of the second millennium AD, searching for answers to a question dating back to the first millennium BC. Archaeologists have done a very good job of figuring out who built the Mayan pyramids, as well as when and how. The question that we had come to seek the answer to, was why? We thought we knew. Now we were trying to find hard evidence, evidence that would stand up to scientific peer review.

We were equipped with the electromagnetic instruments that had served us so well at many other ancient sites around the world, from English henges and mounds to Native America’s mysterious rock chambers and the biggest earthen mounds in the world. The instruments we had applied at all these sites were similar to those used by the U.S. Geological Survey.

Time and again at ancient structures, the instruments had revealed unusual concentrations of geo-magnetism, electrical ground currents, and electric charge in the air. A few other pioneers had noticed this before us, though never at so many different locations.

A review of previous research, along with site visits with our instruments, began to show that ancient farming civilizations had repeatedly selected spots where natural electrical energies were strongest. There, they had invested mind-boggling amounts of labor to build structures, whose design further concentrated these natural energies.

More years in research libraries, surveying archaeological findings, revealed a pattern. The megaliths of various forms were not built when you would expect it. If these pyramids, henges, mounds, etc. were purely symbolic monuments celebrating something, you would expect them to be built when a civilization was in its prime and had resources to spare.

In fact, following the histories of these sites in chronological order generally showed the opposite to be true. Although it sounds suicidal, these labor-intensive behemoths repeatedly were built at a time when the available land had become exhausted through overuse – in the days before fertilizer and crop rotation. With a food crisis at hand, a society would suddenly take up to 25% of its work force and put it in a multi-year (or even multi-decade) project, building an enormous structure with no apparent practical value.

You would expect these societies to at least then continue their slide into poverty and hunger. Yet the opposite occurred again and again – far too often to be mere coincidence. Once these pyramids, mounds, or rock chambers were completed, the society would suddenly start to prosper.

There is some missing factor regarding these ancient structures, something crucial that archaeologists are not aware of. There are good reasons to believe that this had to do with tapping the earth’s naturally-occurring electrical energy to produce more food, in a manner not that different from a modern technology that does the same thing today.

 

The people of the volcano
High civilization first arose in the Americas in the most unlikely of settings. The Vera Cruz province on Mexico’s Gulf Coast is even today so inhospitable that its 20,000 square miles of mosquito-filled swamps contain few villages, fewer roads, and can test even the most inveterate traveler.

Yet over 3,000 years ago, something remarkable happened here to a people about whom we know next to nothing, not even what they called themselves. In recent centuries, as Mexicans began to stumble on mysterious ruins hidden deep inside uninhabited jungle, they simply began referring to them by the only other thing of value that was found there: rubber trees. And so this long-vanished population became the Olmec.

In a land of flat, featureless terrain half again as large as Connecticut, Rhode Island, and Massachusetts combined, lies a single ‘oasis’ of the vertical: the lonely, mist-shrouded volcanoes of the Tuxtla Mountains. Here, rocky ridges arc gracefully skyward, pulsing with an invisible electrical force – a force the Olmec may have taken with them to new lands.

At another volcano, Piton de la Fournaise, off Madagascar on the island of Reunion, French scientists have measured how rainwater running off through underground channels in volcanic rock will generate electrical charge and magnetic fields, usually concentrated at the highest points.1

Other geologists have captured such charge on instruments atop sacred Mexican volcanoes, including Popocopetol near Mexico City. At ‘Popo’, the electric charges reach thousands of volts per meter.2

Did the ancient Olmec wish to export this effect from their homeland? After farming the Tuxtla slopes for centuries, they moved out into the surrounding swamplands and took with them enormous quantities of their local basalt, volcanic lava that has been hardened under heat and pressure. One of the best examples is today a remote and uninhabited plateau, named after a nearby village, San Lorenzo. After a trying journey by mule through tropical flatlands, full of biting insects, you come upon a 160-foot-rise, ascending to a half-mile long, flat top where over two hundred small mounds were built c. 1250 BC, centuries before the founding of Rome.

Archaeologists had long assumed that this small plateau was part of the natural landscape. The famous American archaeologist Michael Coe, however, found something very exciting when his team had cleared the summit of growth and began to dig in earnest.3

This flat piece of ground, standing 16 stories above its surroundings, was not entirely natural after all. At least the top 25 to 30 feet were composed of earth, carried up here, basket by basket, by its Olmec founders. A good portion of it was not just any kind of dirt, but layers of an unusual type of gravel, mined from stream beds. It forms a distinctively different color from the earth above it and below it, because the pebbles are stained with iron. This would make them highly electrically conductive, and most of the 200 small mounds on the top rested on a pile of such pebbles. But these were not the only large scale artificial features. Steep-sided, knife-edged ridges were built to run out and down from the plateau, looking every bit like the volcanic basalt ridges back home in the Tuxtla volcanoes.4

In fact, there is a great deal of Tuxtla basalt built into the San Lorenzo plateau in such a manner that it may have acted as veins of electrical current, pulsing within the hill, created by water coursing through rock, much as on the volcanic slopes of the Olmec homeland. No fewer than 14 springs at the base of the hill are connected to about 20 man-made lakes atop the hill, lakes lined with water-repellent blocks of bentonite, a type of magnetic stone.5Sluice gates were built into the lakes that, when lifted, sent water rushing down through the hill inside a series of man-made drains, composed of hundreds of tons of tightly-fitted, quarried blocks of basalt that had been transported on rafts through 60 miles of swamps from the Tuxtla Mountains. Herculean labor was expended in an extremely forbidding place. Why?

One characteristic of rushing water, which intrigues us, is its ability to generate electric charge. This effect can be dramatically illustrated with a simple device, called a Kelvin water dropper. Start by placing an LED indicator light bulb (like the small ‘on’-light on a computer) between two separating streamlets of water. The build-up of electrical charge, generated by the water droplets, will actually cause the indicator bulb to light up about every 20 seconds.6,7

Two special characteristics of the Tuxtla basalt are of particular interest here. Because of its high content of magnetite and other metals, this rock is fairly magnetic. Secondly, the high metal content makes it an efficient conductor of electricity.8 Furthermore, the ability of any rock to conduct electricity is proportional to its water content. If a sluice gate at the main reservoir on top of the San Lorenzo hill was opened, the water would rush down the drains, through the interior of the hill.

Now, the rocks of the drains had all the above properties, making them electrical ‘veins’ to carry the charge of the running water throughout the hill. The electric charge would concentrate its strongest effects on the mounds on top (just as ground charge accumulates at high points during a thunderstorm), and the knifelike ridges would conduct more current up from the jungle floor below. What were they hoping to accomplish?

Richer than their neighbors
In a pattern that we shall see repeated again and again over the continents and millennia, this awe-inspiring building effort followed poverty and preceded riches. The Olmec were originally subsistence farmers, practicing slash-and-burn agriculture.

When their numbers swelled beyond what their homeland could support, they fanned out into the surrounding lowlands. But solid ground was scarce in this region where most acreage is under water year-round, and most of the rest is flooded during the rainy season. So they farmed what was left: the tops of the natural levees beside the riverbanks.9 These were narrow strips but fertile, their soil renewed by mud deposited in the floods, much as in the Nile River Valley a world away in Egypt.

Still, full time farming has always led to the same problem: runaway population growth. The narrow levees soon grew crowded, and pressure continually grew on the ability to feed more people on a fixed amount of land.

The levee settlements developed into two basic patterns: sites with artificial earthen mounds, and sites without such mounds. In Science, William F. Rust and Robert J. Sharer describe a puzzle regarding these settlements: villages with a mound always fared much better than virtually identical ones a few miles down the same river without a mound.10 Analyses of trash heaps and skeletons showed that mound villagers enjoyed a significantly higher standard of living. They ate more meat, for example, and otherwise lived healthier lives. They had a much higher social status and were far wealthier, possessing many valuable items, including polished serpentine tablets and ornaments of jade.

As a whole, the Olmec began to prosper in their new homeland and grew sophisticated indeed. Imported magnetite was polished into concave mirrors that could focus the sun’s rays like a reflective version of a magnifying glass, starting fires. As they polished these stones, the Olmec must have noticed how doggedly the dust would cling – a result of magnetic attraction. In fact, a needle of this magnetic ore (magnetite) was excavated by Michael Coe at San Lorenzo, complete with a groove for suspending it from a string, an arrangement that would allow it to act as a compass needle.

Because the magnetite ore was formed when the magnetic poles of the Earth pointed a slightly different direction, the needle of San Lorenzo points 8 degrees west of present-day true magnetic north. Intriguingly, many Olmec and Mayan structures are strictly aligned with an axis that points 8 degrees west of today’s magnetic north.11 If in fact this is what it looks like, then the Olmec invented the compass a thousand years before the Chinese.12

No one can figure out how the Olmec paid for their many luxury objects. Nothing has been found that they were exporting in turn. Some speculate that perhaps they exported perishable handicrafts, or the brightly colored feathers of birds, none of which would turn up in a modern dig.

We began to wonder if the wealth may have been based on something else perishable – food. Surplus agricultural production can always be easily exported in return for luxury goods, and it fails to show up in excavations.

At San Lorenzo, over time, larger and larger blocks of basalt were brought in. Weighing up to 30 tons, they were floated up to 60 miles through swamps and dragged to the top of this partly artificial hill. Some of them were carved into the shape of human heads, 8 to 10 feet across. Others were carved into blocks, which were flattened on top and decorated around the sides with fertility symbols, including the ubiquitous were-jaguar, half man and half cat. Wear patterns on the tops show that something was frequently placed on them, something heavy enough to have worn the hard basalt at the edge and center of the flat-topped surface.

In western Guatemala, similar basalt sculptures demonstrate a clear ability of the Olmec to determine the north and south poles of magnetic fields. If a whole body was depicted, the magnetic poles straddled the navel. In the seven large basalt heads, there were detectable north poles located at the right temples of the heads. These were not inserts in the heads; rather, the poles were present in the original rock. This positioning is obviously not by accident and suggests the carvers may well have used an Olmec lodestone compass to detect magnetic polarities in the basalt and then carved the sculpture accordingly13,14

In Chapter 9, we shall see such ancient abilities on display again in English henges.

It is known that after completing the hill of San Lorenzo, the Olmec prospered. At La Venta, 100 miles to the northeast, they later built an even more impressive set of fertility images with basalt structures, including an imitation volcano.

Unfortunately, La Venta today is situated atop the richest oil deposit in Mexico, and is not open to the public. The ruins lie on an island in the middle of a volcanic lake that also sits precisely atop one of the largest gravity anomalies in Mexico, a correlation with another geophysical force that we shall discuss in later chapters.

Further west, at Tres Zapotes, these impressive Olmec geo-engineers leveled the top third of a mountain and erected on it a series of four-sided stone pyramids that were flat on top. This creation was at the peak of a long mountain ridge from which much of their magnetite was mined, and would therefore be littered with magnetic anomalies.

End of an era
The Olmec disappeared into history after a sustained drought. Less rain fell, so the rivers flooded less frequently, depositing less fertilizing alluvium and leading inevitably to soil exhaustion.

The people’s response was dramatic. The huge, carved basalt heads were ripped from their perches and buried, but not just anywhere. They were dragged out onto the knife-edge ridges at great risk and interred there under thin layers of soil.15 Was this a desperate attempt to increase the conductivity of the ridges, drawing up natural telluric current, thereby reinforcing the charging effects of the drains?

Heads and altars (all the extra available basalt) were also buried on the plateau top, but again, not just anywhere. They were placed only in an east-west line directly above the chief underground drain. The faces of the heads were disfigured before burial, so it seems that any ceremonial aspect of these creations had been abandoned. Do these remains hint of a heroic yet ultimately futile effort to survive?

We do know one thing they did, shortly before vanishing into the mists of time. They conveyed some of their knowledge to a group of rainforest dwellers, whom we today call the Maya. At a spot loaded with geologically induced electric ground charge, the Olmec brought their influence to bear in the creation of their last pyramid and the Mayans’ first: the very special structure now known as the Lost World Pyramid.

In Chapter 4, we shall return to look at the startling results of our tests there – results that show profound changes in agricultural growth, produced by the energies harnessed at the Lost World Pyramid.

But first let us explore the nature of these natural energies and how ancient builders might have detected them and harnessed them in the first place.

 

References to Chapter 1
1J. Zlotnicki & J.L. Le Mouel 1990. Possible electrokinetic origin of large magnetic variations at La Fournaise volcano. Nature, vol. 343, pp. 633-635
2Ralph Markson & Richard Nelson 1970. Mountain-Peak Potential-Gradient Measurements and the Andes Glow. Weather, vol. 25, p. 357
3Michael D. Coe & Richard A. Diehl 1980. In the Land of the Olmec. University of Texas Press, Austin
4Coe & Diehl, op. cit., p. 28
5Coe & Diehl, op. cit., p. 30
6Anonymous 1960. The Amateur Scientist, Scientific American, vol. 175
7William Thompson (aka Lord Kelvin) 1872. Reprints of Papers on Electrostatics and Magnetism. Macmillan, London, pp. 319-325
8Coe & Diehl, op. cit., p. 379
9Coe & Diehl, op. cit., vol. 2, pp. 151-52
10William F. Rust & Robert J. Sharer 1988. Olmec Settlement Data from La Venta, Tabasco, Mexico. Science, vol. 242, pp. 102-104
11Robert H. Fuson 1969. The Orientation of Mayan Ceremonial Centers. ANNALS, Assoc. of American Geographers, vol. 59, pp. 508-510
12John B. Carlson 1975. Lodestone Compass: Chinese or Olmec Primacy? Science, vol. 189, pp. 752-760
13V.H. Malmstrom 1976. Knowledge of Magnetism in Pre-Columbian Mesoamerica. Nature, vol. 259 (5542), pp. 390-391
14V.H. Malmstrom & Paul E. Dunn 1979. Pre-Columbian Magnetic Sculptures in Western Guatemala. Summarized on the science page of Time Magazine, September 3, 1979 under the title Fat Boys.
15Coe & Diehl, op. cit.

Chapter 2: Harnessing nature’s electromagnetic energy

 Any sufficiently advanced technology is indistinguishable from magic.”
Arthur C. Clarke 1961. Profiles of the Future (Clarke’s Third Law)

 

 We live our lives engaged in a daily electromagnetic dance with our planet. Earth is hardly a stable world. In fact, it pulses every day with powerful rhythms of electrical and magnetic force, and so do we.

Earth produces a magnetic field much like a bar magnet. Any compass needle tells us that the north pole of our earth magnet is near the physical North Pole, which is one end of the axis on which our planet rotates. Life on Earth would be impossible without this field, called the geomagnetic field.

The geomagnetic field deflects the solar wind, deadly blasts of electrically charged high-energy particles from the sun. Mars lacks a magnetic field, causing its surface to be hostile to life.

But the geomagnetic field takes a beating doing its job. The field is depressed when struck by ‘gusts’ of solar wind, much like a warrior whose shield deflects a mighty enemy sword strike but recoils in the process. An aurora can be produced by an unusually powerful solar gust, and is roughly analogous to the ringing of the shield under a particularly vicious blow. During the Northern Lights, air molecules at the upper edges of the atmosphere are so excited by the impact of solar wind that they glow.

When our part of Earth rotates into sunlight at dawn, the geomagnetic field recoils from the impact of solar wind, and this affects the field lines. Field lines can be thought of as linear incarnations of the magnetic field. Sprinkle iron filings on a piece of paper above a magnet, and you will watch the filings arrange themselves along these invisible lines of force.

At dawn, the magnetic field lines shrink (Fig. 3), which makes them stronger. That means that the strength of the geomagnetic field running through the land, our homes, our bodies, and brains surges each dawn. Conversely, at night the geomagnetic field lines are no longer being compressed by solar wind and they gradually stretch into a long tail, emanating from the dark side of the planet in a pattern reminiscent of a comet. This lengthening of the field lines weakens them.

The end result of all this is that the geomagnetic field weakens at night only to come roaring back quickly as dawn approaches. There are places where the local geology makes this effect stronger than at others due to the principles of electromagnetism.

‘Electromagnetism’ is a single word for a reason. Magnetism and electric force are inextricable twins. A moving electric current generates a magnetic field, and a changing magnetic field generates electric current in anything present that will conduct it. This is how our electric power plants work. Physical force from coal, oil, or falling water move a mass of copper wires past a huge magnet, and an electric current is generated. This is the principle of physics known as induction.

Earth itself is subject to these same forces. When dawn brings a change in magnetic field strength, it actually generates weak DC currents in the ground. Like all electric currents, these telluric currents travel better in some media than others. Ground with lots of metal or water within it conducts these natural, daily currents particularly well. Drier or less metallic ground conducts it less well.

When these two types of land intersect we have what geologists call a conductivity discontinuity, and interesting things happen there. The ground current hitting this boundary has a tendency to either reinforce or weaken those daily magnetic fluctuations – sometimes by several hundred percent.1 This change in magnetic field strength in turn generates more electric current. So conductivity discontinuities are ‘happening places’. Their magnetic fluctuations and ground currents are much higher than in surrounding areas. It was our good fortune that it is the z-axis of the geomagnetic field that is affected this way, the axis that our magnetometer measures.2

One important effect of these ground currents is that they will attract electrified air molecules of opposite sign. A positive electric current in the ground will draw negatively charged air molecules toward it and vice versa. These effects are magnified on islands or peninsulas.

 

Seed of Knowledge_fig.1_resize
Fig. 3. The earth’s magnetic field lines are often idealized in illustrations as the same as a bar magnet with its north and south poles. (A) In reality, it is shaped by the electrical solar wind, which compresses the field lines (strengthening them) on the sunward side, and stretches the lines (weakening them) ‘downwind’ on the night side of our planet. (B) Therefore, as our spot on the earth’s surface rotates toward the sun at dawn, the stretched geomagnetic field lines snap back, raising their strength. In areas with certain geological characteristics, this strengthening can be extremely dramatic and create powerful effects. (Drawing by John Burke, copyright © by Kaj Halberg)
The electric henge
It is intriguing that ancient builders, as we shall see, repeatedly selected conductivity discontinuities for the sites of giant structures of earth and stone. Furthermore, most of these earth currents travel near the surface, in the uppermost three feet or so of ground. Cutting a three-foot deep ditch in the ground tends to block the flow.

henge is simply a C-shaped ditch, and only a few also have stones. The ditches tend to have been dug a minimum of three feet deep. The open partf the ‘C’ is undisturbed ground that has not been cut by a ditch. Ground current, trying to flow across a henge, will be blocked by the ditch. Like water hitting a seawall, it will flow around the ditch, following the path of least resistance, which is the undisturbed ground in the middle of our ‘C’. All the ground current will concentrate here in order to enter inside the area enclosed by the henge ditch. This is similar to what happens when a large tidal pond fills up and empties itself twice a day through a narrow opening. When the tide is changing, the current can be swift and surprisingly powerful within the narrow outlet.

Kaj and I have measured this effect on telluric current ourselves on site in England, as have others. However, we were quite surprised to see that Native Americans in the Midwest built similar henge-like structures.

Mounds and pyramids: the great attractors
The functioning of Native American mounds incorporates the physics of ground current as well as another feature, well-known to anyone who has seen a tall tree that has been struck by lightning. Any buildup of electric charge in the air will seek out the shortest course to connect with opposite electric charge in the ground. What is invisible to us is the mostly positive ground current that ends up concentrating as positive electric charge in the tree. Opposites attract, and the positive charge is drawn toward the predominantly negative electric charge in a thunderstorm. Those negatively charged electrons in the thunderhead likewise concentrate wherever an oppositely charged electric attractor is strongest, i.e. the treetop. These two reach out to one another.

In the process they ionize, or electrify, some of the air between them. If this process proceeds far enough, a lightning bolt discharges and the tree is struck. What is important to bear in mind for our investigation is that not all such processes are energetic enough to be visible to the eye like a lightning strike.

If no thunderstorm is present, the location of the positive and negative charges is ordinarily just the opposite. Earth’s atmosphere has a natural electric field that is generally positive (except during special local events like thunderstorms), while the surface itself is predominantly negative. The electric fields, like magnetic fields, possess field lines.

One of our instruments, the electrostatic voltmeter, can measure the amount of electric charge in the air. If you raise it from waist level to above your head on an average day, in an average place, you will see an increase of about 50 millivolts (mV). In certain special places and at certain times, it can rise a great deal more, as it did for us atop Tikal’s Lost World pyramid.

Fig. 4 shows how the atmosphere’s electric field lines will concentrate at the top of a peak, and the negative charge of the ground will likewise concentrate at a peak. The trick for the ancient mound and pyramid builders (particularly in the lightning-rich Americas) was to build a mound on an electrically active spot like a conductivity discontinuity, then make the mound high enough and narrow enough to attract a dense bunching of atmospheric field lines – all without drawing a lightning strike.

Neither these mounds nor the New World pyramids had pointed tops like those in Egypt, which would lessen the chances of a lightning strike. However, many of the larger Native American earthen mounds had wooden temples on top, which every so many years would be struck by lightning and burned to the ground.

There are additional methods that the ancient architects used to concentrate and harness natural electromagnetic energies. For now, let us address the question of how these forces could possibly have improved agricultural results.

 

Seed of Knowledge_fig.2_resize
Fig. 4. Any protrusion on the earth’s surface concentrates the positive electric field lines of the atmosphere at the top. Likewise, negative charge from the entire ground area of the base is concentrated in the smaller area of the top. (Illustration after R. Reiter 1960. Relationships Between Atmospheric Electric Phenomena and Simultaneous Meteorological Conditions. I. Air Research and Development Command. © U.S. Air Force. Used by permission)

 

 

The genesis of a new theory
No one, to our knowledge, has ever reported a peculiar effect: that seeds placed at these structures and subjected to certain energies there will often grow dramatically better and give higher yields. In Guatemala, Kaj and I hoped to find evidence that would confirm our theory: that producing better crops was the motive for erecting these megalithic ‘monuments’.

When we have explained this theory in person, we have inevitably been interrupted with the urgent question, “What in the world ever made you start thinking this way in the first place?”

The answer involves the type of business that I was doing at the time. In 1993, I was helping to develop a new technology for treating seeds with electromagnetic energy. Prototype devices had improved seed performance dramatically by subjecting the seeds to a special type of carefully controlled shower of electrons. This treatment was not microwaves or irradiation, but something far gentler, more akin to static electricity (the type that makes a balloon stick to the ceiling when you rub it on your hair). It could dramatically change agricultural seeds when used very precisely, altering the physiology of the seeds and thereby the plants that grew from them.

The primary inventor of the electron shower seed treatment was Michigan biophysicist W.C. Levengood who had been working for over ten years on the electrophysiology of seeds. He had a few patents to his credit in the field, but this time, he had found something truly revolutionary:

Seeds exposed to the right strengths of these gentle electron showers for the right amount of time showed drastic growth improvements. They germinated faster, grew through the seedling stage faster, and (as we were soon to find out) matured faster in the field, and were more resistant to stress of all kinds. Most importantly, they produced more food per acre. And all this productivity was accomplished without the use of a single chemical.

The improved resistance to stress was the most striking characteristic of all. Sweet corn seeds treated by these special showers and then planted in cold wet soil too early in the spring, were ten to twelve days more mature and an arm’s length taller by midseason. Their ears of corn were ready for market sooner and there were more of them. The ears were larger and more uniform.

We have since had commercial growers who used the process on sweet corn comment on the improved quality of the ears. Nine out of ten farmers, who have planted such improved seed in various countries, using a variety of crops, have returned each year to pay to have the process performed on their next year’s seed. Growers, who have tested a small amount, have come back to insist that all their seed be treated next year or they will take their business elsewhere.

Such stories include carrot growers in Canada, tomato farmers in China, and even whole provincial governments in China, where they are trying to grow soybeans on the same latitude as Nova Scotia, and finding the soybean plants can use all the help they can get. There the improved soybean seed emerges from the soil so much faster that it is apparent within days. The growth rate and final yields substantially exceed those of plants from non-treated seed.

In later years, other test plantings were affected by extreme weather conditions and provided more visually dramatic evidence of the differences made by this energetic process. Carrots in any field that floods for several days early in the season, usually produce a bumper crop of octopus-shaped roots that cannot be sold and are therefore called culls.

When this happened in Ontario, Canada in a field that was half planted with energized seed, we cut the cull rate in half. On the opposite side of the country, in the Pacific Northwest, a salt incursion in a carrot test plot a few days after planting killed forty percent of the carrot seedlings, except in the numerous plots sown with otherwise identical seed that we had treated. In Chinese provinces with acid soil, seeds treated with this energy produce more than 12% extra soybeans per acre and 30% more tomatoes, a vegetable that originated in pre-Incan Andes.

The process essentially subjects the seed to an electromagnetic impulse that prompts a natural response from the cell on the molecular level. It dramatically improves the plant’s ability to withstand stress.

While the biochemistry involved sounds technical, it is in fact the same response that occurs inside our own bodies when we jog, or engage in other aerobic activity. The net result functions almost like a vaccination or inoculation against what is called oxidative stress. This is the primary cause of aging in our bodies and is the reason we take anti-oxidants like Vitamin E to guard our health.

Author John Burke (right), biophysicist W.C. Levengood (centre), and an assistant, controlling germinated seedlings, which have been treated with the method described above, and later planted in an experiment plot near Blissfield, Michigan. (Photo copyright © by Kaj Halberg)
Free radicals and mitochondria
Oxidative stress is Mother Nature’s biggest design flaw if you hope to live a long and vigorous life. Because of this insidious design flaw, we slowly lose vigor and start to break down a bit at a time. This is true for plants and animals. But we have found a way to tinker with this degeneration and improve plants’ capabilities.

Oxygen is both our curse and our blessing. It is the high-test gasoline of metabolism, but its ‘exhaust’, so to speak, can be extremely toxic to those using it. Inside each of our cells are one to two hundred tiny energy factories called mitochondria. This is where the oxygen we breathe gets processed and used to make energy for our cells. The design flaw occurs because 2-3% of these oxygen molecules are processed improperly, and they emerge from the ‘assembly line’ in a damaged form. They are missing an electron.

For reasons of stability, electrons around atoms and molecules occur in pairs. When you remove one, you then have a lone wolf electron that needs a partner. He will do his best to rip that partner out of anything he comes into contact with: cell wall membranes, DNA, etc. Those areas that have electrons stolen in this way now have their own problems and fail to function properly. In fact, the reason that rotten fruit gets soft is that a flood of free radicals are eating up the cell wall membranes inside.

When we run, we consume more oxygen. So more oxygen molecules are processed inside the mitochondria and that means that our steady 2-3% rate of mistakes produces greater numbers of free radicals. How can this be good for us? Well, strictly speaking, it isn’t. What is good for us is the response of our cells to this threat. They make their own anti-oxidants, including Vitamin E, Vitamin C, and a dozen or more others that few of us have ever heard of. To simplify somewhat, these vitamins begin supplying that extra electron and thereby converting the dangerous free radical back to a normal, balanced oxygen molecule.

These natural anti-oxidants now gobble up the free radicals we produced during the run and then continue to hang around for a while. We now have more antioxidants and fewer free radicals than we did before the run, explaining how aerobic exercise extends our life. What’s more, the next time we run and there is another spike in free radical production, our cells are better able to quickly produce more anti-oxidants than they were before they had this practice. This is why we compare these controlled free radical stresses to a vaccination, where the body is given a dose of something harmful in order to give the body’s defenses practice at combating it, so that the next time they encounter the harm they will be better able to deal with it.

This process has been known in the plant world for a long time and is called ‘stress hardening’. A specific form is ‘cold hardening’ and is familiar to many backyard gardeners. In the spring when you take your tomato seedlings in their little cells out of the greenhouse to transplant them into the ground, you want to leave them first near the door of the greenhouse for a few days and let them gradually adjust to the colder conditions outside. Then you move them outside, but don’t transplant them yet.

During this period, the stress from the cold, like any environmental stress for plants, disrupts the oxygen processing and raises that 2-3% free radical rate to maybe 5 or 6%. Then the process we discussed above with increased anti-oxidant production occurs, and you now have a plant that can handle cold stress better next time.

In fact, it can handle other stresses better, too. Some researchers have noticed that cold hardening can also make a plant more resistant to disease, or drought. What we have realized is that all stresses (heat, cold, drought, flood, disease, senescence) impact the plant the same way at the cellular level by worsening the free radical situation. One treatment with the above-mentioned electron shower can kick-start this process before the first seed hits the soil.

In this process, very low energy electrons (running through the air at one millionth of an amp) coat the seed. As they are absorbed into the cell, they get absorbed as well into the mitochondria, where they are known to disrupt the oxygen processing in a way that increases the production of our free radicals. Then the cell’s anti-oxidant defenses get involved, etc. In the end you end up with a cell that can handle just about anything better.

The second worst design flaw of Mother Nature is, that right where the free radicals emerge within the mitochondria resides the mitochondria’s own DNA.

Now, mitochondrial DNA is very unusual, not a double helix like normal DNA, because about a billion years ago, mitochondria were separate, complete micro-organisms. They were the world’s first oxygen breathers. This made them Ferraris in a world of Volkswagens and soon every Volkswagen wanted a Ferrari engine.

Eventually, the world’s most important incident of symbiosis occurred, and a marriage was made between mitochondria and other micro-organisms. They became one. Forever afterwards, mitochondria would live inside of cells that had a nucleus and the far more efficient double helix form for its DNA. That was when life could finally crawl out of the oceans, now that the poisonous atmosphere of toxic oxygen could be harnessed.

When some kind of damage (possibly a free radical) impacts a double helix, the odds are that what it takes out will not be very important, because most parts of the double helix do not hold genes. They seem to be there almost as filler, without a real role to play, which is why scientists named them junk DNA.

Since junk DNA takes most of the hits, the double helix is fairly resistant to serious damage from small stresses. The mitochondrial DNA, on the other hand, is not a double helix, but a simple ring, just like certain very ancient bacteria have today. It has very few ‘junk’ units, and the ring lies right next to where free radicals arise, so free radical damage is constantly hitting chunks of meaningful DNA.

As you might imagine, once the DNA goes, things fall apart. And the DNA does go. The cell’s natural anti-oxidant defenses are working all the time to defend against this threat, but they are always losing the battle. In the end, one bit at a time, cumulative damage occurs. This is why we have so much less energy as we age. A normal person aged fifty has half the number of mitochondria per cell as she or he did at age 20. However, exercise can increase the number of mitochondria per cell in humans.

In plants, the free radical equivalent of exercise, in carefully controlled doses, can do the same. In our test plantings with seed companies and in our own fields, we repeatedly noticed an accelerated maturity. The plants were ready to be harvested earlier than seeds taken from the same seed lot, which did not receive an electron shower treatment. This early maturity allowed certain hybrids of corn, for example, to be planted further north than they usually could be grown and still attain full maturity.

While researching something else, I stumbled across a paper in a science journal that talked about a new school of thought that loosely calls itself ‘mitochondrial inheritance’. It isn’t inheritance in the sense of genes. It is simply this idea:

As an embryo or a seed grows, its cells have to divide and duplicate themselves many times. It has long been known that when this happens, the double helix DNA in the cell’s nucleus controls the operation. What has just been discovered more recently, is that the mitochondria still behave as if they were that separate organism that was co-opted by other cells so many eons ago. The mitochondria control their own division and replication. And now it is known that mitochondria with damaged DNA will make a damaged twin. Soon both of them will divide and replicate – making more damaged twins and so on. With each generation, more damaged copies are made and the original damaged unit becomes an avalanche of damaged units. Ultimately, a child or an animal or a plant is born all right, but bears less than perfect ‘energy factories.’

For a plant with limited amounts of light, food, and water, this process means that the plant’s cells will be unable to make full use of the inputs. By contrast, a cell with fully intact mitochondrial DNA will make much more efficient use of the inputs, and therefore can complete its full life cycle on less input. In the real world, it matures early and, therefore, can be harvested before an average crop is ready. Once we understood this, we felt that we could tell everyone.

With our discovery of how electromagnetism can increase agricultural production, we could see what others had missed – the significance of heightened energy activity at ancient monuments.

 

References to Chapter 2
1Tsuneji Rikitake & Yoshimari Honkura 1985. Solid Earth Geomagnetism. Terra Scientific Publishing, Tokyo, pp. 296-325
2Rikitake & Honkura, op. cit., p. 296